Advanced Genomic Technologies for Genetic Enhancement of Yam

(Dioscorea spp.)

Ranjana Bhattacharjee, Antonio Lopez-Montes, Michael Abberton, P. Lava Kumar, and Robert Asiedu

r.bhattacharjee@cgiar.org

International Institute of Tropical Agriculture (www.iita.org)

World Congress on Root and Tuber Crops
Nanning, Guangxi, China, January 18-22, 2016
Challenges with clonally propagated crops

- Long breeding cycle
- Low multiplication ratio of planting materials
- Vegetative propagation
- Heterozygous genetic background
- Polyploidy (in yams)
- Poor to no flowering/synchronous flowering
- Dioecious (yams)
- Mislabelling/presence of duplicates
- Labor-intensive
- Little or poor knowledge and information available on useful traits for use in improvement programs
- Low genetic diversity in farmers’ field
- Biotic stresses (mainly fungi and viruses)
Facts/Opportunities: Yam

Different species: >600 species, of which 10 are cultivated

- *D. alata*
- *D. dumetorum*
- *D. bulbifera*
- *D. rotundata*

Variability within each species: Opportunities for crop improvement

- *D. rotundata*
- *D. alata*

Food security

Resilience

Sustainability

Income Generation

Hybrids/Varieties

A member of CGIAR consortium

www.iita.org
Various targets for crop improvement

- **Yield potential and yield stability**
 - Photosynthesis efficiency
 - Harvest index
 - Reduced inputs (fertilizers, pesticides, etc.)

- **Adaptation to climate change**
 - Tolerance (drought, heat, etc.)
 - Avoidance
 - Post stress recovery

- **Durable resistance to biotic stress**
 - Existing pests and diseases (virus, fungi, nematodes)
 - New pests and diseases
 - Invasive species

- **Quality and value-added products**
 - Starch quality and quantity
 - Consumer preference
 - Food safety aspects
Completing the Whole Genome Sequencing of six important cultivated *Dioscorea* spp.
- *D. rotundata* (IITA-IBRC-JIRCAS)
- *D. alata* (IITA-TGAC)
- *D. dumetorum* (underway, IITA-AOCC)
- *D. cayenensis, D. esculenta, D. bulbifera*

Development of genomic resources

Development of mapping populations for different target traits

Development of training populations

Genotyping-by-Sequencing:
- understanding population structure, genetic diversity, varietal identification,
- linkage mapping and identification of QTLs
- GWAS and GS

Metabolomics and high-throughput phenotyping

Application of transcriptomics

Tissue culture and Genetic transformation
Whole Genome sequencing

- *D. rotundata* (IITA-IBRC-JIRCAS)
- *D. alata* (IITA-TGAC)
- *D. dumetorum* (underway, IITA-AOCC)

Basic assembly stats

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. contigs</td>
<td>57,706</td>
</tr>
<tr>
<td>Largest contig</td>
<td>296.5 kb</td>
</tr>
<tr>
<td>Total length</td>
<td>620 Mb</td>
</tr>
<tr>
<td>GC (%)</td>
<td>36.05</td>
</tr>
<tr>
<td>N50</td>
<td>19.3 kb</td>
</tr>
<tr>
<td>No. gene models</td>
<td>40,055</td>
</tr>
</tbody>
</table>

- 91.25% properly paired reads mapping
- 96.84% of 44,134 ncbi *D. alata* ESTs hit with BLAST
- Over 90% of Core BUSCO Plantae genes present: C:88%[D:25%], F 6.0%,M:5.5%,n:956
Yam: GCDT project

Objective: True-to-type/duplicate identification in national and international germplasm collection; establishment of a global DNA bank

- Priority species: *Dioscorea alata*, *D. rotundata* and *D. cayanensis*
- Number of accessions:
 - IITA: 1500 (*alata* = 815; *cayanensis* = 59; *rotundata* = 626)
 - NARS: 785 (mostly *D. alata*)
- Countries: Benin, Ghana, Togo, Philippines, Costa Rica, New Caledonia, Papua New Guinea, Fiji and Thailand (No samples received from Cote d’Ivoire, Solomon Island, Vanuatu and Vietnam)
- Genotyping with 50 SSR (18 genomic and 32 EST-SSR) markers

USAID-Linkage Project: GBS analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated genome size</td>
<td>1Gb</td>
</tr>
<tr>
<td>Number of samples</td>
<td>96</td>
</tr>
<tr>
<td>Index depth</td>
<td>48 individuals per lane</td>
</tr>
<tr>
<td>Phenotype</td>
<td>Anthracnose disease trait</td>
</tr>
<tr>
<td>Sequencing type</td>
<td>Illumina HiSeq 2500 (1-2 lanes)</td>
</tr>
<tr>
<td>Read type</td>
<td>1x100bp Single end</td>
</tr>
</tbody>
</table>

Averages from 96 Samples [using TASSEL (UNEAK) pipeline]
- Unique Tag Counts: 83,018
- Raw Reads: 3,156,223
- Aligned Reads: 2,535,879
- Coverage per unique tag: 30

Figure. Shared SNP distribution contained in at least 50% of the individuals
GBS-based linkage mapping

Figure 4. Genetic map for parent 1 and 2.
Association analysis for anthracnose disease with 10,077 SNPs

Table. Disease state and phenotypic scores for anthracnose disease

<table>
<thead>
<tr>
<th>Anthracnose rating</th>
<th>Range</th>
<th>Meaning</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 - 2% plant area affected with anthracnose</td>
<td>Plant healthy or with a trace of disease</td>
<td>Highly resistant</td>
</tr>
<tr>
<td></td>
<td>>2 - 10% of plant area with symptom of anthracnose</td>
<td>Plant healthy, with more observable anthracnose</td>
<td>Resistant</td>
</tr>
<tr>
<td>2</td>
<td>>10 - 25% of plant area with anthracnose symptoms</td>
<td>Plant unhealthy, with conspicuous anthracnose</td>
<td>Moderately resistant</td>
</tr>
<tr>
<td>3</td>
<td>>25 - 50% of plant area diseased</td>
<td>Plant unhealthy, with large anthracnose lesions</td>
<td>Susceptible</td>
</tr>
<tr>
<td>4</td>
<td>>50% of plant area affected by anthracnose</td>
<td>Lesions coalesced, plant dead</td>
<td>Highly susceptible</td>
</tr>
</tbody>
</table>

Table. Significant SNP loci from the 705 filter subset for both test 1 and 2.

<table>
<thead>
<tr>
<th>Association_test</th>
<th>Locus</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test_1_705</td>
<td>TP6683</td>
<td>0.003</td>
</tr>
<tr>
<td>Test_1_705</td>
<td>TP22</td>
<td>0.004</td>
</tr>
<tr>
<td>Test_1_705</td>
<td>TP7189</td>
<td>0.004</td>
</tr>
<tr>
<td>Test_1_705</td>
<td>TP6186</td>
<td>0.007</td>
</tr>
<tr>
<td>Test_1_705</td>
<td>TP6978</td>
<td>0.007</td>
</tr>
<tr>
<td>Test_2_705</td>
<td>TP11455</td>
<td>0.002</td>
</tr>
<tr>
<td>Test_2_705</td>
<td>TP7744</td>
<td>0.003</td>
</tr>
<tr>
<td>Test_2_705</td>
<td>TP6683</td>
<td>0.006</td>
</tr>
<tr>
<td>Test_2_705</td>
<td>TP12241</td>
<td>0.007</td>
</tr>
<tr>
<td>Test_2_705</td>
<td>TP760</td>
<td>0.008</td>
</tr>
<tr>
<td>Test_2_705</td>
<td>TP12061</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Test 1: Tails of disease score rating scale (1-2) and (4-5) = 155 SNPs p-value < 0.01

Test 2: Disease score rating scale (1-2.9) and (3-5) = 424 SNPs p-value < 0.01

Only 45% of GBS profiles could be annotated to de novo sequencing data from parents
Focus: Genotyping by sequencing (GBS); high-throughput phenotyping (metabolomics); morphological characterization; breeding applications (inter- and intra-specific crosses)

- GBS of 810 *D. rotundata* genotypes (core collection = 470 landraces; breeding lines = 307 genotypes; varieties from markets = 33) completed
- Different bioinformatics pipeline tested: a high proportion of filtered reads aligned to the reference *D. rotundata* genome using bowtie 2 software
- A customized R script identified 3068 polymorphic loci of which 55.9% were bi-allelic and 44.1% multi-allelic.
- Morphological characterization (above and under ground traits) of 810 genotypes (in three replications: head, middle and tail portions) completed for two years

Genotyping by sequencing (GBS) reveals the complex genetics of *D. rotundata*. This sequence alignment shows the heterozygous sequence of the reference genome and three alleles found in *D. rotundata* germplasm. The number of alleles per sample ranged between 1 and 3, indicating that some clones are polyploids.

Total reads processed: 438,685,435
Reads with adapters: 340,851,682 (77.7%)
Reads written (passing filters): 438,685,435 (100.0%)
Total basepairs processed: 44,307,228,935 bp
Quality-trimmed: 2,290,709,390 bp (5.2%)
Total written (filtered): 25,613,093,559 bp (57.8%)
Shorter than 64bp: 273,540,127 (62.4%)
Not assigned to barcode: 12,892,837 (2.9%)
Total reads passing all filters: 152,252,471 (34.7%)
All 810 genotypes planted in an augmented design using three checks

Each tuber was cut into three sections (head, middle and tail) for planting

Planting in two locations including Ibadan and Ikenne, in May and June, 2014 respectively

Observations on following above ground traits such as:
- Days for germination (Earliness)
- Number of vines per portion of the tuber
- Pests and diseases (anthracnose, virus, and nematodes)
- Leaf shape and number of internodes
- Flowering traits (monoecy, dioecy, no flowering)

For below ground observations:
- Tuber number and shape
- Tuber weight

Soil samples from around each tuber and sent for analysis
CRPRTB Complementary Project: Metabolomics

- 49 accessions from IITA breeding program
- 5 species (D. alata, D. bulbifera, D. cayenensis, D. dumetorum, D. rotundata)
- Tuber material (Head, middle and tail; selected leaf material)

No significant difference in metabolite composition between tuber and leaf sampling
Slight gradation in metabolite composition across different portions
Only few metabolites correlate in pathways: due to postharvest deterioration
<table>
<thead>
<tr>
<th>Trait of Interest</th>
<th>No. of female</th>
<th>No. of male</th>
<th>Crosses</th>
<th>Progenies</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUE</td>
<td>6</td>
<td>6</td>
<td>TDr 04-219</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 00/00362</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 95/01932</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 99/02562</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 89/02157</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr Alumaco</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 00/00362</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 97/00777</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 95/01932</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDr 97/00917</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDa 00/00194</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDa 02/00012</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TDa98/01166</td>
<td>4</td>
</tr>
</tbody>
</table>

Conventional karyotyping of *Dioscorea* spp.
IITA-CIRAD-INRA-CTCRI project: Assessment of genetic diversity in *D. alata* germplasm

Student: Ph.D. student (Claudie Pavis), France

- **384** *D. alata* germplasm genotyped with **34** SSR markers
- **A total of 847** alleles recorded across **26** SSRs with mean number of alleles ranging from **10.6** (CIRAD) to **7.5** (IITA)

<table>
<thead>
<tr>
<th>Indicators</th>
<th>INRA</th>
<th>CIRAD</th>
<th>CTCRI</th>
<th>IITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>129</td>
<td>83</td>
<td>82</td>
<td>90</td>
</tr>
<tr>
<td>A⁺</td>
<td>217</td>
<td>255</td>
<td>194</td>
<td>181</td>
</tr>
<tr>
<td>Am</td>
<td>9.0</td>
<td>10.6</td>
<td>8.1</td>
<td>7.5</td>
</tr>
<tr>
<td>As</td>
<td>10</td>
<td>48</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

Genetic Transformation of Yam

- *Agrobacterium*-mediated transformation system established for yam using apical meristems.
- Transgenic plants generated using reporter genes and validated by molecular analysis.
- Significant difference in transformation efficiency was observed among different cultivars transformed.
- It takes 5–6 months from transformation to regeneration of complete transgenic plant.
- The transformation protocol is validated with different accessions of *D. rotunda* and *D. alata*.

Agrobacterium mediated transformation of yam using embryogenic callus

- Regeneration through somatic embryogenesis of yam has been established at IITA-Nairobi.
- Embryogenic calli were transformed with *Agrobacterium* using *gusA* reporter gene.
- Transformed calli are currently under selection and regeneration.

Poster No. P0406
Future Prospects

- Completing the reference genome sequencing of remaining *Dioscorea* spp. mainly *D. cayenensis*, *D. dumetorum*, *D. esculenta* and *D. bulbefera*
- Development of species-specific and cross-species markers
- Understanding the complex traits such as flowering, sex determination, diseases, and quality traits
- NSF-BREAD project: PacBio sequencing and re-sequencing of potential parents
- Understanding nematode resistance using transformation
- Understanding the complexities with flowering traits
- Use of genomics-assisted information in breeding
Partnerships

- RTB team of CGIAR CRP
- Cornell University, USA
- Royal Holloway University of London, UK
- The Genome Analysis Center, UK
- African Orphan Crops Consortium
- Iwate Biotechnology Research Center, Japan
- The Institute of Experimental Biology, Czech Republic
- JIRCAS, Japan
- CIRAD, France and Guedeloupe
- UC Berkeley, USA
- Michigan State University, USA
- National programs within Africa, Asia and the Pacific
- Universities: Masters and PhD students
Sponsors Of the World Congress on Root and Tuber crops

Thank you

BILL & MELINDA GATES foundation