Abstract
Sweetpotato virus disease (SPVD) can cause yield reductions of 56 to 98% (Mukasa et al., 2003) and is difficult to control. Low cost net tunnels can be used to protect planting material hence reduce the impact of the disease. The technology is currently in the third year of validation in Tanzania and Uganda with 140 net tunnels (92 in Tanzania and 48 in Uganda) constructed. This system has so far produced and distributed more than 3,702,700 quality vines. Standards for production of quality seed are also in the final stages of government approval in Tanzania. 60% of multiplication plots inspected at the Lake Zone, Tanzania using these standards met acceptable tolerance levels.

Introduction
Viruses are among the major threats to sweetpotato production in sub-Saharan Africa (SSA). Farmers are encouraged to use clean tissue cultured (TC) planting material. However, these may not always be accessible to the majority of smallholder farmers. It is therefore important to have a reliable decentralized system where farmers can easily access clean planting materials. Multipliers can use insect proof net tunnels to protect their planting material from attack by virus vectors. This can be combined with good agronomic practices and internal and external quality assurance mechanisms to produce healthy seed.

Methodology
• Decentralized Vine Multipliers (DVMs) were supported to construct net tunnels and maintain virus indexed TC planting material inside. These are harvested after 2.5 – 3 months for further multiplication in open beds and sold to farmers 2 months later. The DVMs were also equipped with knowledge and practices on vine conservation, quality management and business enterprise skills.
• A series of consultative meetings led by the Tanzania Official Seed Certification Institute (TOSCI) were held to develop standards for production of quality planting material.
• Conducted pilot inspections of quality declared seed (QDS) multiplication plots among farmer-multipliers to test the standards’ applicability under local context. These plots are the first open field multiplication using cuttings sourced from net tunnels. The inspections were done in Zanzibar (June 2015) and the Lake Zone (March and August 2015).
• 21 multiplication plots were inspected in Mwanza, 5 in Kagera and 9 in Zanzibar regions.
• Farmer multipliers, extension officers and regulators were trained on the use of the proposed standards and inspection protocols to produce quality declared seed (QDS).

Results
• Established 91 new DVMs (67 in Tanzania and 24 in Uganda) and constructed 140 net tunnels (92 in Tanzania and 48 in Uganda).
• More than 3,702,700 thirty centimeter long quality vines of seven varieties of sweetpotato: Kabode (NASPOT 10), Polista, Vita (NASPOT 9), NASPOT 11, Mayai, Mataya and Kiegea produced and distributed.
• Quality standards for various seed classes at the final stages of gazettment in Tanzania.
• The Lake Zone region (Mwanza and Kagera) had a higher percentage of acceptable plots (60%) compared to Zanzibar (55%)(fig. 1). DVMs who met acceptable standards were given labels for use during marketing.

Conclusion
• Successful adoption of the net tunnels and implementation of the standards will limit the spread of virus diseases hence contribute to increased food security.
• The net tunnel technology can be cascaded down to farmer-multipliers successfully provided there is adequate training and good management.
• The proposed standards for production of quality planting material will play a great role in enhancing farmers’ access to clean seed. However, caution is needed to avoid over-regulation which could stifle the system.

References